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Four distinct Northeast US heat wave circulation patterns and
associated mechanisms, trends, and electric usage
Laurie Agel 1✉, Mathew Barlow 1,2, Christopher Skinner1, Frank Colby1 and Judah Cohen 3,4

Northeastern US heat waves have usually been considered in terms of a single circulation pattern, the high-pressure circulation
typical of most heat waves occurring in other parts of the world. However, k-means clustering analysis from 1980–2018 shows there
are four distinct patterns of Northeast heat wave daily circulation, each of which has its own seasonality, heat-producing
mechanisms (associated moisture, subsidence, and temperature advection), and impact on electricity demand. Monthly analysis
shows statistically-significant positive trends occur in late summer for two of the patterns and early summer for a third pattern,
while the fourth pattern shows a statistically significant negative trend in early summer. These results demonstrate that heat waves
in a particular geographic area can be initiated and maintained by a variety of mechanisms, resulting in heat wave types with
distinct impacts and potential links to climate change, and that pattern analysis is an effective tool to distinguish these differences.
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INTRODUCTION
Heat waves cause more deaths than any other weather-related
natural disaster1. Extreme heat, particularly when combined with
high humidity, can cause extremely dangerous conditions for
humans, leading to heat stroke and fatalities2,3. Cities are
particularly vulnerable to heat waves, due to the urban heat
island effect4–6. In addition to human health, heat waves can
negatively impact the energy sector (additional air conditioning),
agriculture (crop failures, increased pests, animal deaths), local
ecologies (pond and lake health, plant and tree health), and
infrastructure (including roads and railroad tracks). Moreover,
long-duration or multiple heat waves can be associated with
drought7 and flash drought8, which has additional long-term
negative impacts for humans, animals, plants, resources, and the
economy. Under climate change, heat waves are expected to
increase in intensity, duration, and frequency9, exacerbating these
negative impacts.
Though heat waves and climate change projections of heat

waves have received attention for other regions across the
globe10–12, here we examine heat waves for a region that has
received less attention, the US Northeast. Heat waves in this
region merit closer consideration, as several Northeast coastal
cities, including the major population centers of Boston and New
York City, are associated with some of the highest US anomalous
mortality rates (over 1.5 deaths per standardized million) during
oppressive June–August heat days (defined as days with apparent
temperature, based on both temperature and relative humidity, at
least one standard deviation above seasonal means)13. The most
deadly heat wave to impact the Northeast occurred in 1911, when
temperatures surged for 11 straight days, killing at least 340
people14.
Previously, trends and future projections for Northeast heat

waves have been identified within the context of US-wide studies.
For example, researchers found that heat waves (two or more
consecutive days exceeding the local 85th-percentile minimum
apparent temperature, based on temperature and water vapor

pressure) in 50 US cities (1950–2010) increased in frequency by 0.6
times per decade, in intensity by 0.1 °C per decade, and in
duration by 0.2 days per decade, while for Boston the trend in
frequency and intensity increased even faster6. Among 55 US
locations (1948–2012), both Boston and New York City experi-
enced significant increases in decadal heat days (95th-percentile
3-day mean apparent temperature, based on temperature, water
vapor pressure, and wind speed) and heat events (multiple heat
days), and Boston saw an increase in heat event duration4. Among
187 US locations from 1979 to 2013, significant positive trends
were found in the Northeast for May–September daily minimum
temperature and equivalent temperature (a measure that
incorporates both dry-bulb temperature and specific humidity)15.
Statistically significant upward trends in equivalent temperature
were also found for high-humidity-related heat wave days
(defined as equivalent temperature exceeding both daily and 3-
day 90th percentiles), which account for about 80% of Northeast
heat waves, for the period 1981–201516.
These upward trends are expected to continue in the future. For

example, based on even a relatively modest warming of 1.5–2.0 °C
and an associated moisture increase based on the
Clausius–Clapeyron relationship17, highly populated areas such
as the Eastern US could regularly experience heat waves with a
greater apparent heat wave index (based on CMIP5 daily
maximum temperature and daily minimum relative humidity)
than the Russia 2010 heat wave in near-future scenarios18. In
addition, high-mortality heat waves (those with over 20%
increased mortality, accounting for about 1% of all heat waves)
are projected to increase for a number of US communities,
including six in the Northeast, for the time period 2061–2080
under the RCP4.5 and RCP8.5 warming scenarios19.
Because of these recent and projected upward trends in

Northeast heat waves, it is important to understand the
meteorological conditions and circulation associated with heat
waves in this region. However, an in-depth analysis focusing on
heat wave circulations for the Northeast has not yet been done,
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and previous analyses that have included the Northeast have
considered all regional heat waves in a single category, that of a
typical Peterson Type 2 heat wave high pressure system7, defined
by a Gulf of Mexico or tropical Atlantic airmass associated with a
mid-level high-pressure system located near or slightly down-
stream of the Northeast US, and anomalously high sea-level
pressure (SLP) similarly located downstream9,20. However, heat
waves presumably also occur in association with other circulation
patterns, and have different magnitudes, impacts, predictability,
and relationships with other phenomena such as surface moisture
and radiation feedback. By considering only a single category of
heat wave, we limit our understanding of these associated
characteristics.
Here, we perform k-means clustering21 on daily circulation fields

(500-hPa heights and 900-hPa winds) to separate Northeast US
heat wave days into several flavors, or large-scale meteorological
patterns22, defined as circulation systems that have a spatial scale
anywhere between mesoscale systems and near-global scale
climate variabilities. Although heat wave definitions can vary
widely from study to study and in application, and often rely on
different formulations of heat indices and thresholds, here we
define heat wave days in terms of maximum daily temperature, as
is done in many previous studies9,15,20. This provides a first step in
understanding the circulation and meteorological implications
associated with extreme heat in the Northeast, and allows us to
consider both dry and humid heat waves. Within each set of
pattern days, we analyze the associations with warm air advection,
subsidence, surface humidity, and soil moisture, all of which can
affect localized surface heating. We also examine transitions
between the pattern days, as well as trends in the patterns over
the 1980–2018 period to assess whether certain heat wave
patterns have become more or less common in response to
recent warming. Finally, we examine electrical energy usage within
the context of the four patterns to provide one perspective on the
societal impact of the different patterns. The heat wave identifica-
tion and clustering techniques presented here can be applied to
study heat wave variants and their impacts in any region.

RESULTS
Identifying heat wave patterns
For this study, heat waves are defined at the station-level, based
on 35 Global Historical Climatology Network [23] (GHCN) stations,
using a definition of three or more consecutive days of maximum
daily temperature (Tmax) above the 95th-percentile for all days
1980–2018. The individual station heat wave days are combined
to form the set of dates on which k-means is performed (repeated
dates are included only once). For clarity, we list several terms in
Table 1 that are used throughout the study and have specific
meanings. In particular, we distinguish between station extreme
heat days (any date with above-95th-pecentile Tmax for the
station), station heat wave events (three or more consecutive
station extreme heat days), station heat wave days (individual
days within station heat wave events), and the combined regional
heat wave days, which is the unique set of days when a station
heat wave day occurs at one or more stations concurrently.

Regional heat wave days do not necessarily represent individual
synoptic-scale events, since heat wave days at one station may or
may not coincide with or partially overlap with heat wave days at
another station. Instead, regional heat wave days can be thought
of as snapshots of regional conditions that lead to extreme heat at
specific station locations.
From 1980–2018 there are 1693 Northeast regional heat wave

days where at least one of the 35 GHCN stations simultaneously
experiences a station heat wave day. All regional heat wave days
occur during the months of April–September (that is, no station
experiences 95th-percentile Tmax outside of that time period). The
annual mean number of station extreme heat days, station heat
wave events, and duration of station heat wave events is shown in
Table 2 for each of the 35 stations, along with the 95th-percentile
Tmax threshold for that station. Stations overall average 2.8 heat
wave events per year, with a mean duration of 4.3 days. The mean
95th-percentile Tmax is 29.6 °C (85.3°F). Regionally, just 20.4% of
the 1693 regional heat wave days represent heat wave days that
occur at a single station only. The balance reflects regional heat
wave days that occur at multiple stations concurrently, with over
56% of the regional heat wave days occurring at five or more
stations concurrently.
Non-hierarchical k-means clustering21 is used to separate the

1693 regional heat wave days into four circulation patterns
(P1–P4) based on daily reanalysis 500-hPa geopotential height
anomalies and 900-hPa wind anomalies. Figure 1a shows
composites of P1–P4 500-hPa geopotential heights and anomalies
and mean sea-level pressure (MSLP), while Fig. 1b shows 900-hPa
winds and surface temperature anomalies. The monthly frequency
(April–September) of pattern days is shown in Fig. 1c. The relative
frequency of station heat wave days within each pattern is shown
in Fig. 1d. Additional reanalysis composites are shown in Fig. 2a–d,
including 850-hPa temperature advection anomalies, 800-hPa
vertical velocity anomalies, 2-m specific humidity anomalies, and
top layer soil moisture anomalies, respectively. All anomalies
shown are based on climatological daily means.
Table 3 includes a summary of characteristics for the four

patterns, including the percent of regional heat wave days
assigned to each pattern, the mean percent of stations that
experience simultaneous heat waves for the pattern days (the hit
rate), the mean duration of regional heat wave days within the
patterns, and the mean areal-averaged near-surface temperature,
vertical velocity, wind speed, and wind direction for each pattern.
The mean duration of each pattern requires some clarification: this
is the average number of consecutive regional heat wave days
within each set of pattern days. As such it is an estimation of how
long the region is subject to a particular circulation regime that is
linked to heat waves at one or more stations, as opposed to the
pattern duration at individual stations experiencing heat waves.
Following is a detailed description of each heat wave circulation
pattern.

Pattern descriptions
P1 features a shallow upper-level trough located across the
Northeast, with its axis east of the Atlantic seaboard, and
anomalously low 500-hPa geopotential heights and MSLP (Fig.

Table 1. Terms used in this study.

Term Definition

Tmax Station daily maximum temperature

Station extreme heat day Tmax greater than 95th percentile of all days for station

Station heat wave event Three or more consecutive station extreme heat days

Station heat wave day Single day within a station heat wave event

Regional heat wave day Day when a station heat wave day occurs at one or more stations simultaneously
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1a) over the Canadian Maritimes. Low level winds are north-
westerly, and the near-surface temperature is slightly above the
climatological normal, particularly in southern portions of the
domain (Fig. 1b). The pattern occurs preferentially in July (Fig. 1c),
and the majority of the stations experiencing heat waves in this
pattern are located towards the south and southeast of
the domain (Fig. 1d). Temperature advection is predominantly
negative (the most negative of the four patterns) due to low-level
northwesterly winds (Fig. 2a), but subsidence is anomalously high
in regions experiencing extremes (Fig. 2b). Near-surface humidity
is average (Fig. 2c), but the ground is anomalously dry, particularly
to the south, potentially suppressing evapotranspiration (Fig. 2d).
The mean pattern duration (mean number of consecutive regional
heat wave days within P1 days) is the lowest of the four patterns
(Table 3).

P2 represents what we often think of as a classic Northeast
summer heat wave, although here it occurs preferentially in late
spring and early summer (Fig. 1c). An anomalously high upper-
level ridge is in place over the Northeast, with high MSLP over the
waters to the east of the southeast US (Fig. 1a). High temperature
anomalies (the highest of the four patterns) are centered over the
Great Lakes region but extend throughout the Northeast (Fig. 1b).
Low-level winds are predominantly westerly and southwesterly,
leading to anomalously high warm air advection (Fig. 2a). The
majority of heat waves in this pattern occur in western portions of
the domain, and in particular New York (Fig. 1d). The airmass in P2
is particularly moist, with the most positive and widespread
specific humidity anomalies (Fig. 2c), while soil moisture is
anomalously low (Fig. 2d). P2 features the largest proportion of
simultaneously-occurring station heat wave days (Table 3),
reflecting the widespread nature of this pattern of heat wave.

Table 2. Northeast GHCN stations used in the study and their mean 95th-percentile Tmax, mean annual extreme heat days (days with Tmax over the
95th-percentile), mean annual number of heat wave events (three or more consecutive extreme heat days), and mean duration of heat wave events
1980–2018.

Station Location 95th percentile Tmax

(°C)
Mean annual extreme
heat daysa

Mean annual heat wave
eventsa

Mean heat wave
duration

USC00170814 Brassua Dam, ME 26.8 18.2 2.4 4.2

USC00171628 Corinna, ME 29.4 19.5 2.5 4.3

USC00172765 Farmington, ME 28.9 19.5 2.6 4.2

USC00173046 Gardiner, ME 29.4 18.9 2.5 4.1

USC00190120 Amherst, MA 31.1 20.4 2.8 4.5

USC00190736 Blue Hill, MA 30 22.6 2.9 4.4

USC00196783 Reading, MA 30.6 21.5 2.9 4.0

USC00198757 Walpole 2, MA 31.1 20.2 2.6 4.3

USC00272999 First Connecticut Lake, NH 26.1 22.3 2.9 4.2

USC00300183 Angelica, NY 29.4 19.3 2.7 4.2

USC00300443 Batavia, NY 30 18.8 3.0 4.3

USC00301752 Cooperstown, NY 28.9 21.1 2.6 4.4

USC00301966 Dannemora, NY 28.3 19.1 3.2 4.1

USC00302610 Elmira, NY 31.1 19.6 2.6 4.3

USC00303184 Geneva Rsch Farm, NY 29.4 21.7 2.6 4.2

USC00304102 Indian Lake 2SW, NY 26.1 21.9 3.0 4.3

USC00304912 Lowville, NY 28.3 21.5 2.8 4.4

USC00305426 Mohonk Lake, NY 30 19.5 2.8 4.7

USC00306085 Norwich, NY 30 18.9 2.5 4.3

USC00306314 Oswego E, NY 29.4 18.4 2.3 4.1

USC00306774 Port Jervis, NY 31.1 22.0 3.1 4.4

USC00307484 Saratoga Springs 4SW, NY 31.1 19.5 3.1 4.3

USC00309000 Watertown, NY 29.4 19.1 2.3 4.4

USC00374266 Kingston, RI 30 23.2 3.3 4.7

USC00437054 Saint Johnsbury, VT 29.4 23.7 3.8 4.3

USC00437607 South Hero, VT 29.4 23.0 2.9 4.2

USW00004725 Binghamton, NY 28.3 22.6 3.0 4.5

USW00014733 Buffalo, NY 29.4 19.3 2.2 4.3

USW00014735 Albany AP, NY 30.6 22.0 3.1 4.2

USW00014742 Burlington Intl AP, VT 30 21.3 2.8 4.2

USW00014764 Portland Intl Jetport, ME 28.9 20.9 2.4 3.9

USW00014765 Providence T F Green AP, RI 30.6 22.7 2.9 4.4

USW00014768 Rochester Gtr Intl AP, NY 30 22.3 2.9 4.2

USW00014771 Syracuse Hancock Intl AP, NY 30.6 20.6 2.5 4.2

USW00094728 New York Ctrl Pk Twr, NY 31.7 22.5 2.9 4.6

aTotal number of station extreme heat days and station heat wave events divided by number of years in study.
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This pattern also features the longest mean duration (mean
number of consecutive regional heat wave days within P2 days) of
2.5 days.
P3 features a shallow upper-level trough located across the

Ohio Valley, with anomalously high ridging to the east of Maine,
and high MSLP well to the east of the Southeastern US (Fig. 1a).
Anomalously high surface temperatures are centered across New
Hampshire and Maine, with low-level winds predominantly from
the southwest (Fig. 1b). The pattern occurs preferentially in mid-
summer to late-summer (Fig. 1c). Heat waves occur mostly in the
eastern portion of the domain for this pattern, with fewer heat
waves in western New York (Fig. 1d). This pattern features
anomalously high near-surface humidity (Fig. 2c) and the smallest
surface moisture anomalies (Fig. 2d), and is the most anomalously
rainy of the patterns (not shown). Subsidence (Fig. 2b) is
anomalously low for this pattern, consistent with anomalously
high precipitation.
P4 is similar to P2, but with two distinctions: the upper-level

ridge is situated more northerly, and there is a slight trough in the
flow over the coast of the Carolinas, with high MSLP located

farther to the east (Fig. 1a). P4 tends to occur throughout the
warm season (Fig. 1c), in contrast to P2, which tends to occur in
late spring and early summer. The majority of the heat waves
occur in the northwest regions (Fig. 1d), where anomalous high
surface temperatures extend from Canada well into the Northeast
(Fig. 1b). In the western regions, low-level winds are westerly and
southwesterly, while in the eastern portions of the domain, low-
level winds are predominantly northwesterly (due to the slight
trough to the south) (Fig. 1b). Both warm air advection (Fig. 2a)
and subsidence (Fig. 2b) are anomalously high to the northwest,
consistent with where heat waves occur in this pattern. P4
features anomalously moist air only in the northwest region
(Fig. 2c), and the driest soil moisture of the four patterns (Fig. 2d),
particularly to the south, potentially suppressing evapotranspira-
tion. Although P4 has the least number of regional heat wave days
assigned to it, the percent of stations experiencing extreme heat is
the second highest after P2 (Table 3).
The unique characteristics of each pattern suggest that extreme

surface temperatures in the Northeast are often related to a
combination of circulation features and mechanisms. The

Fig. 1 Regional heat wave day patterns. Composites for P1–P4 days of a 500-hPa geopotential heights (thick contours every 6 dam,
anomalies shaded every 4 dam) and MSLP (thin contours every 2 hPa), and b 2-m temperature anomalies (shaded, in 0.6 K increments) and
900-hPa winds (quivers, largest quiver 8.5 ms−1). c April–September frequency of P1–P4 days with gray shading indicating the 95% confidence
interval using random sampling of all regional heat wave days (n= 1693), and red, blue, and black bars indicating, respectively, higher-than-
normal, lower-than-normal, and normal monthly values at the 0.05 level of significance. d Relative frequency (percent) of station heat wave
days assigned to P1–P4 (for each station, number of heat wave days in specific pattern divided by total number of all-station heat wave days
for specific pattern, represented by black dots, where size of dot is proportional to frequency). Heat wave patterns are from k-means clustering
of MERRA-2 1980–2018 500-hPa geopotential height and 900-hPa wind daily anomalies (based on the climatological daily means).
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following sections examine additional temporal characteristics of
the patterns.

Pattern transitions
Figure 3a–c shows, for each station, the percent of P1–P4 days
that make up day 1, day 2, and day 3 of the station heat wave days
(relative frequency is indicated by dot size). Most station day 1
patterns are split between P2 and P4. While P2 continues to
dominate day 2 patterns, there are less P4 days and more P1 and
P3 days. This trend continues to day 3, resulting in a more equal
distribution between P1–P4.
While this graphic provides granularity at the station level, the

results are more easily seen by combining the station data (Fig. 3d–f).
However, widespread events (where multiple stations experience
extreme heat simultaneously) can bias the combined results. Given
this caveat, Fig. 3d shows the frequency of P1–P4 for the first 3 days
of combined station heat wave events (the background frequency).
P2 comprises the majority of these days, which may be partially
related to its relatively long duration (Table 3). The relative pattern

frequency (compared to the background frequency) shifts from P2/
P4 on day 1 to a greater percentage of P1/P3 by day 3, consistent
with Fig. 3a–c. Figure 3e, f shows in detail how day 1 (day 2) patterns
transition to all other patterns on day 2 (day 3) of station heat wave
events. For most station heat wave events, there is strong pattern
persistence. That is, for a particular heat wave event at a station, the
first 3 days tend to occur under the same pattern assignment. Only
one pattern, P3, shows a tendency to transition to P1 on day 2 or day
3, although the vast majority remain in P3.

Similarity to all-day patterns
To gain perspective on whether P1–P4 are unique in producing
extreme heat, we use Self-Organizing Maps (SOMs) to produce a
set of circulation patterns based on 500-hPa geopotential height
anomalies and 900-hPa wind anomalies as for k-means, but for all
days 1980–2018. The results, arranged into a 4 × 5 pattern-space,
are shown in Fig. 4a, where each pattern comprises 2.5–8.3% of
the days 1980–2018. Deep troughs (enhanced ridges) occupy the
lower left (upper right) of the pattern-space. The 1693 regional

Fig. 2 Composites of other meteorological fields on regional heat wave days. Composites for P1–P4 days of a 850-hPa temperature
advection anomalies (shaded, in 1 × 10−5 K s−1 increments) with 850-hPa temperature (contours, in 2 K increments) and 850-hPa winds
(quivers, largest quiver 10ms−1), b 800-hPa vertical velocity anomalies (shaded, in 0.025 Pa s−1 increments, such that anomalous subsidence is
red), c 2-m specific humidity anomalies (shaded, in 0.7 kg/kg increments), and d top surface layer soil moisture anomalies (shaded, in 0.02
increments). The black dots in each panel are identical to those in Fig. 1d, showing relative frequency of station heat wave days for each
pattern.
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heat wave days fall predominantly into four SOM patterns, with
SOMs 13, 9, 7, and 15 representing the majority of P1, P2, P3, and
P4 days, respectively (Fig. 4b).
The P2-like pattern, SOM 9, has the largest number of days

assigned to it (8.3%). However, 21.5% of the regional heat wave
days fall into SOM 9, which is significantly higher than
expected based on the background frequency. P1, P3, and
P4 days also occur with much higher frequency than expected
in SOMs 13, 7, and 15, respectively. This suggests that only
certain circulation patterns are associated with extreme heat,
but these same patterns can and do produce non-extreme
surface temperatures also.

Trends
Some individual stations show statistically significant positive
annual trends (1980–2018) in extreme heat days, heat wave days,
and heat wave events (Fig. 5a), based on linear least squares fit.
Monthly analysis shows that the majority of positive trends occur
in May and September, including an increase in heat wave
duration at several stations in September (Supplementary Fig. 1).
A number of stations show significant positive annual trends for
station heat wave days assigned to P3, while one station shows a
negative trend for both P1 and P4 days (Fig. 5b). Monthly analysis
(Supplementary Fig. 2) shows P1 days decreasing at some stations
in August, P2 days increasing at many stations in September,
P3 days increasing at a number of stations July–September, and
P4 days increasing at several stations in September. While trend
analysis is limited by the short time period and station-level
sample sizes, these results suggest that Northeast extreme heat
days are increasing predominantly in May and September, and
much of this increase is associated with P2 and P3 days (and to a
lesser extent with P4 days in September).
Overall annual trends, using linear least squares fit as well as

rank correlation, in P1–P4 regional heat wave days (where one or
more stations experience heat wave days concurrently) are shown
in Fig. 5c. Only P3 shows a statistically significant upward trend for
the annual period. Separated by month (Supplementary Fig. 3),
there is a statistically significant downward trend in P1 in May, and
statistically significant upward trends in P2 in May, P3 in August
and September (by rank correlation only), and P4 in September,
consistent with the station-level results. This can be compared to
annual and monthly trends for the corresponding SOM patterns
(Fig. 5d and Supplementary Fig. 4), to determine if the patterns
themselves are changing in frequency, or if the number of
extreme heat days within the patterns are changing. From Fig. 5d,
P1-like and P4-like patterns are increasing in frequency, while P2-
like and P3-like patterns are decreasing (opposite the trends for
P1–P4). This intriguing result can be interpreted in a number of
ways. It is possible that while the circulation favorable for heat
waves is becoming less frequent, the heat waves themselves are
(1) becoming more likely due to increased warming, (2) becoming
more intense, or (3) simply lasting longer.

Links to energy use
Different heat wave patterns may result in varied societal impacts
(a key motivator for examining heat wave patterns). Here we
examine one potential impact: energy use. Heat waves can have
detrimental effects on human health, and cooling measures are
often necessary to mitigate the threat. As such, heat waves can be
linked to high energy usage in the summer, when air conditioning
is more frequently used. Additionally, the Northeast has a greater
percentage of less-efficient window units24, and with it an
expected higher energy demand during heat waves. Figure 6a
shows a scatter plot of the mean maximum daily electrical
demand, and mean near-surface dry-bulb temperature at time of
peak demand for six Northeast states (Maine, New Hampshire,
Vermont, Massachusetts, Connecticut, and Rhode Island) for
2013–2018 (New York is not included here, as the mean near-
surface dry-bulb temperature associated with peak demand is not
available.) For reference, two least squares fit lines are added for fit
below and above the 65°F cooling/heating degree day definition.
The below 65°F (above 65°F) fit line has slope, intercept, and
coefficient of determination equal to −95, 20,642, and 0.50 (333,
−7167, 0.64). Extremes of temperature (both cold and warm)
generate the largest peak demands, as one would expect, with the
highest-temperature peak demand exceeding the lowest-
temperature peak demand. In Fig. 6b, mean peak demand
standardized anomalies are shown for each set of pattern days,
divided by state. In general, usage is anomalously high for regions
experiencing heat waves (for example, southern regions in P1).
The P2 pattern shows the highest anomalous energy use. This
pattern occurs more often in late spring and early summer and is
anomalously hot and humid. The anomalous energy demand may
be related to the timing of the heat waves in this pattern—early
season anomalous heat in conjunction with a humid airmass (even
if raw temperatures are considerably below mid-summer levels) is
associated with increased mortality13. The second highest
anomalous use pattern is P3, which tends to occur in July and
August, and less often in the spring. This pattern is anomalously
humid throughout the region. Energy use is highest in the
southeast portion of the domain, where there is both anomalous
humidity and heat. Energy usage in P4 is slightly higher than for
P1, but not near the levels of P2 and P3, and may be related to
lower humidity levels (Fig. 2c).

DISCUSSION
Heat waves in the Northeast occur in four distinct flavors, or large-
scale meteorological patterns, based on the underlying circulation
and mechanisms for generating or supplying surface heat. These
mechanisms, which are closely related to the circulation, include
subsidence, advection of warm air, and suppressed evapotran-
spiration (which supplies a heating effect). Here, we define heat
waves as three or more consecutive days of 95th-percentile
maximum daily temperature at 35 Northeast GHCN stations,
1980–2018. This results in 1693 regional heat wave days where a

Table 3. Characteristics of the four patterns associated with Northeast heat wave events.

Pattern Regional heat wave
days (%)

Regional hit
ratea (%)

Mean pattern
dur.b (days)

Mean temp.c

(°F)
Mean vert. vel.c

(Pa s−1)
Mean wind
speedc (m s−1)

Mean wind dir.c

(° from N)

P1 23.7 21.3 1.9 85.2 0.0019 6.7 241.3

P2 27.8 39.4 2.5 85.1 0.0032 7.0 216.0

P3 27.5 20.0 2.1 85.2 −0.0093 7.3 228.3

P4 21.0 29.0 2.2 85.2 0.0024 6.2 196.2

aMean percent of all possible stations experiencing simultaneous heat wave days
bMean number of consecutive regional heat wave days in pattern
cArea average of MERRA-2 fields on pattern days
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heat wave occurs at one or more stations in the Northeast
concurrently. We separate these 1693 regional heat wave days
into four circulation patterns P1–P4 based on k-means clustering
of daily upper-level circulation and lower-level winds, in order to
evaluate several of these mechanisms within the framework of
large-scale synoptic circulation. While we present results for the
Northeast US, this technique can be used to examine heat waves
and their impacts in any region.
Pattern P1 represents a July/August shallow trough with

extreme heat to the south and southeast. Winds are predomi-
nantly from the northwest in this pattern, and surface heating may
be linked to anomalously high subsidence as opposed to
temperature advection. Pattern P2 represents an early summer
ridge with anomalous surface heat in the western regions. Low-
level winds transport anomalously hot and humid air from the
southwest for this pattern, which features the largest number of
95th-percentile Tmax days and the longest duration of pattern
days. Pattern P3, where most extremes occur in the eastern
portions of the domain, reflects a shallow trough across the Ohio
Valley, with southwest winds transporting hot and humid air
towards the Northeast. Pattern P4 represents a summer ridge with

extremes in the northwest portion of the domain, with evidence
of both temperature advection from the southwest and sub-
sidence leading to anomalous surface heating. In addition, P1, P2,
and P4 feature anomalously dry conditions that may tend to
exacerbate surface heating due to suppressed latent heating via
evapotranspiration. While both P1 and P4 feature subsidence, the
differing location of station heat waves in the patterns may
indicate a topographical influence on subsidence in P1, where
downsloping winds may contribute to heating.
While the regional heat wave days are somewhat evenly

distributed between P1–P4 (21–28%), P2 and P4 days make up the
majority of the first and second days of station heat wave events.
The relative proportion of P1 and P3 station heat wave days
begins to increase by the third day. To some extent this likely
reflects synoptic-scale ridges moving eastward as the station heat
wave events transpire. However, station extreme heat can occur in
all four patterns (even as the first day of an event), and there is a
strong tendency for station heat wave event patterns to persist.
For example, if the first day of a station heat wave event is a P1
pattern, the most likely pattern for the second and third day is
also P1.

Fig. 3 Pattern transitions for first three days of station heat wave events. Percent (dots, where dot size is proportional to frequency) of
station heat wave events that occur in pattern P1–P4, and where red, blue, and black dots indicate, respectively, higher-than-normal, lower-
than-normal, and normal values at the 0.05 level of significance, for a day 1 b day 2 and c day 3 of station heat wave events. d Percent of
pattern assignments P1–P4 for (left to right) combined and separate days 1–3 of station heat wave events. e Frequency of transitions from
P1–P4 on day 1 to next-day P1–P4 for station heat wave events. f Frequency of transitions from P1–P4 on day 2 to next-day P1–P4 for station
heat wave events. For d–f, all station heat wave days 1–3 are counted, regardless of whether other stations share the same heat wave day. Red,
blue, and black bars indicate, respectively, higher-than-normal, lower-than-normal, and normal values at the 0.05 level of significance, and
gray shading indicates the 95% confidence interval of background frequency based on random sampling.
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Despite recent warming throughout the summer season15,
annual trend analysis shows that only P3 heat wave days exhibit
widespread and statistically significant increases in frequency
since 1980. Monthly trends are more informative. Increases in P3
heat wave days are particularly pronounced in late summer and
early autumn months, and predominately occur at inland stations.
P2 heat wave days exhibit statistically significant increases in
frequency during May for several stations. These trends in P2 and
P3 are likely related to statistically significant increasing trends in
extreme heat days during May and September. Additionally, P4
heat wave days show significant upward trends during September
while P1 heat wave days show significant downward trends
during May. The identification of increasing or decreasing
frequency in only certain circulation patterns associated with heat
waves, and only at certain times, is an important addition to our
knowledge of Northeast heat waves, and underscores the value of
performing pattern analyses such as done here for specific
regions.
The most anomalous energy use occurs for the early summer

P2 pattern (which coincidentally shows a statistically significant
increase in frequency since 1980 in May). This is consistent with
anomalously high mortality associated with April–May high-
humidity heat waves in the Northeast, despite daily high
temperatures being below the peak values experienced during
the summer months13. Anticipating these early-cooling-season
episodes, based on forecasts of heat wave patterns such as P2,
can potentially save lives, and eliminate surprise electrical
demand.
This study provides an initial assessment of the mechanisms

associated with extreme heat under several Northeast circulation

regimes, and is intended as a first step to a more in-depth analysis
of Northeast heat waves. Importantly, it outlines a technique that
can be used for other study regions, and may assist in identifying
circulation trends that may not be readily apparent when
evaluating heat waves as a singular phenomenon. It also serves
as a useful basis for future research into heat wave predictability,
model assessment, and climate projections. Future work will build
on our definition of heat wave (based on Tmax) to incorporate
additional heat measures, including heat stress indices that
account for humidity and overnight temperatures. In addition,
future analysis will include a complete surface energy budget,
analysis of evapotranspiration, and back-trajectory analysis of the
near-surface air, to examine the development of the heat wave.
This is of particular relevance in pattern P1, which features trough-
like conditions and cold air advection. It may also help to better
understand pattern P3, which has anomalously high precipitation
associated with it. Because this pattern occurs mainly in July and
August, it is possible that the advection of extremely warm air and
surface heating outweighs the cooling effects of clouds and
precipitation. It is also possible that the precipitation occurs over a
limited time period and spatial scale, such as that associated with
afternoon convective storms. Assessing the heat wave patterns in
terms of wet years and dry years may help to better understand
the feedback roles of precipitation and soil moisture in the
circulation regimes. Additional analysis will also examine the
relationship between trends in heat wave-generating circulation
regimes versus trends in actual heat wave events occurring under
those regimes.

Fig. 4 Self-organizing map of circulation patterns. a The results of SOM analysis on the same fields as used for k-means typing, but for all
days 1980–2018, separated into a 4 × 5 pattern space, with the text above each panel showing the SOM number, the percent of all days
assigned to the SOM, and the percent of regional heat wave days that belong to the SOM (in parenthesis, with the value in bold if significantly
higher or lower than expected based on random sampling). b The relative frequency (proportional to dot size) of P1, P2, P3, and P4 days
assigned to each SOM.
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METHODS
Temperature observations
To identify station heat wave days, we use daily maximum temperature
(Tmax, units of 0.1 °C), for 35 Global Historical Climatology Network23

(GHCN) stations in Maine, New Hampshire, Vermont, Massachusetts, Rhode
Island, Connecticut, and New York that are missing no more than 3% of
daily data, 1980–2018. We define a station extreme heat day as any day in
the station record where Tmax exceeds the 95th percentile of all days
1980–2018, and a station heat wave event to be any occurrence of three or
more consecutive extreme heat days at a particular station. Using this
definition, we identify 1693 unique dates where heat wave days occur at
one or more stations concurrently, and we call these regional heat wave
days. This particular terminology is repeated throughout the study, and is
further defined in Table 1. In particular, a station heat wave day is defined
at a particular location, while regional heat wave days consist of the
collective set of station heat wave days, with each date listed only once.
We also consider station heat wave days where Tmax exceeds 90°F

(32.2 °C) for three or more consecutive days at a station. This has the effect
of increasing the frequency of station heat wave days in the southern
portion of the domain. Because we are ultimately more interested in
anomalous heat, as opposed to a strict threshold, we choose to use the

95th-percentile criterium. However, we note that our results are largely
insensitive to this choice.

Reanalysis data
To capture circulation and other atmospheric features on regional heat
wave days, we use the National Aeronautics and Space Administration
(NASA) Modern Era Retrospective Reanalysis for Research and Applica-
tion25 (MERRA-2) daily mean fields, including 500-hPa geopotential
heights, 900-hPa winds, MSLP, 2-m temperature, 2-m specific humidity,
surface soil wetness, 850-hPa temperature advection, and 800-hPa vertical
motion for 1980–2018. Anomalies are created by removing the long-term-
daily mean at each grid point, where the long-term daily mean is created
by taking the mean of each year-day (Jan-01, Jan-02, etc. through Dec-31)
for the 39 years, and smoothing the results with a 21-day running mean.

Energy use data
Energy use data is provided by several independent system operators
(ISO). ISO New England provides online access to a daily summary of
regional mean peak electrical demand and maximum temperature for load
zones in the states of Maine, New Hampshire, Vermont, Massachusetts,

Fig. 5 Trends in heat waves and patterns. Trends in 1980–2018 a station extreme heat days, heat wave days, heat wave events, and heat
wave duration, and b station heat wave days assigned to P1–P4, where enlarged dots indicate statistically significant positive (red) or negative
(blue) trends (at 0.05 level). c Frequency (bars) and linear trends (dashed lines) of regional heat wave days assigned to patterns P1–P4 and d
same as c except for the SOMs that are most similar to P1–P4 days, where dashed lines are red (blue) to indicate statistically significant positive
(negative) trends at the 0.05 level. Trends are determined by linear least squares fit and significance is based on the two-sided t-distribution of
the Wald Statistic. Additionally, the Kendall’s tau-b rank test is considered for c, d, and any significant trends at the 0.05 level are indicated by
text at the top of the panels.
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Connecticut, and Rhode Island. Maximum daily temperature is also
available for a select station within each load zone. The New England
Control Area (NECA) load zone data is the total of the individual load
zones, and the NECA maximum daily temperature is the mean area-
weighted temperature for the representative stations. Separate weighting
is applied for summer and winter months. Data is available from March
2003 to the near-present.
New York ISO provides online access to hourly load data for New York

State, separated by load zones. We use the Integrated Real-Time Archive to
determine daily peak demand. Although maximum hourly temperatures
are also archived for a number of stations (Load Forecast Weather Data
Archives) in certain load zones, a regional area-weighted maximum
temperature similar to that provided by ISO New England is not available.
The data is available from June 2001 to the present, but to match ISO New
England data availability, we use 2003–2018 data.

Typing methodology
Circulation on the 1693 regional heat wave days is captured by performing
non-hierarchical k-means clustering21 of daily mean MERRA-2 500-hPa
geopotential height anomalies and daily mean MERRA-2 900-hPa wind
anomalies over the domain prescribed by 30–50°N and 90–60°W.
Anomalies are created by removing the climatological daily mean at each
grid point. Before processing, the input fields are standardized and
reduced through empirical orthogonal function (EOF) to retain 95% of the
variance.
K-means clustering is an unsupervised machine-learning algorithm that

separates data into a pre-specified (k) number of non-overlapping clusters,
where each data point (in this case, the daily mean anomaly field) can only
belong to one cluster, based on the nearest fit (smallest Euclidean
distance) to a cluster centroid (the mean of all data points assigned to the
cluster). The process is iterative, with initial centroids randomly selected
from the set of data points, and data points continually re-assigned based
on least Euclidean distance.
Here, we use the MATLAB kmeans function, with a custom wrapper26,27

to determine an optimal number of clusters k and the most repeatable
clustering using that optimal k. Using this methodology, an optimal
number of clusters for this data is either 4 or 6. We use k= 4 for simplicity,
as the k= 6 solution has a similar set of four patterns, but with two of the
four patterns split into two sub-patterns each.
K-means clustering was also performed for various other combinations

of meteorological fields on regional heat wave days, including MERRA-2 2-
m temperature, 700-hPa and 800-hPa vertical velocity, 10-m winds, and
MSLP anomalies. Typing with MSLP anomalies or vertical velocity
anomalies was problematic in that no optimal k emerged for the heat
wave days, so these fields were avoided. The temperature field gave no
additional information, and the 10-m wind results were similar to those
using 900-hPa winds. Additionally, we also performed typing using
individual station heat wave days, such as the first or second day of a

station heat wave event, as opposed to all station heat wave days. This
reduced the sample size considerably, and led to less stable clustering.
Ultimately, we determined that using 900-hPa wind and 500-hPa
geopotential height anomalies on all regional heat wave days resulted in
consistent and reliable typing results.
Additionally, we type using self-organizing maps (SOMs)28 on the same

fields as for k-means clustering (500-hPa geopotential heights and 900-hPa
winds, made into anomalies by subtracting the climatological daily mean,
and then standardizing), but for all days 1980–2018. SOMs use neural
network classification and unsupervised learning to separate input fields
into a prescribed number of nodes of a pattern-space, where each node is
defined by a set of weights that correspond to the input field size. As input
fields are processed, both node weights and the surrounding node
weights are adjusted until the nodes represent the best fit of the data.
Here we prescribe a 4 × 5 rectangular pattern-space using the MATLAB
SOM Toolbox 2.0 from http://www.cis.hut.fi/somtoolbox/, with parameters
set for linear initialization, 200 initial training iterations, and 1200 secondary
training iterations. The regional heat wave days within the SOM patterns
are identified and compared to the results of k-means clustering.

Frequency analysis
Statistical significance of the seasonal frequency of the patterns (Fig. 1c) is
based on a Monte-Carlo approach, where the set of pattern assignments is
randomly shuffled 1000 times among the regional heat wave days, and the
seasonal frequency of each pattern is recalculated to identify the
background frequency. Actual frequencies outside the bottom 2.5% and
top 2.5% of the random values for each season represent statistically (at
the 0.05 level) different values from the background frequency. Similar
methodology is used establish significance for the first 3 days of station
heat wave pattern frequency and pattern transitions (Fig. 3). In these cases,
the pattern assignments of the first three days of the station heat wave
events are randomly shuffled before recalculating the frequencies to
create the 95% confidence interval of background frequencies.
Statistically higher-than-expected or lower-than-expected frequencies

are indicated by red and blue coloring, respectively, for bars or dots in all
associated figures. For all bar charts, the gray shading behind the bars
represents the 95% confidence interval of background frequencies.

Trend analysis
Trends (Fig. 5 and Supplementary Figs. 1–4) are assessed using both linear
least squares fit and rank correlation of the counts per year of station
extreme heat days, station heat wave days, station heat wave events,
station heat wave duration, station pattern days, and regional heat wave
days. Statistical significance (at the 0.05 level) of linear trends are identified
using a two-sided t-test of the Wald Statistic (scipy.stats.linregress).
Statistical significance of rank correlation is established using Kendall’s
tau-b ranking (scipy.stats.kendalltau).

Fig. 6 Electrical demand associated with heat wave patterns. a Maximum daily electrical demand (in MW), 1980–2018, for mean regional
daily dry-bulb temperature at peak load (°F), according to ISO New England, for the New England Control Area (NECA) encompassing the
states of Maine, New Hampshire, Vermont, Massachusetts, Connecticut, and Rhode Island. The red lines show the least squares fit for data
below and above 65°F. bMean usage by state (shaded, standardized anomalies) for heat wave days in patterns P1–P4. Standardized anomalies
are derived by removing the long-term daily mean (e.g., Jan 01, Jan 02, etc.) from each day’s peak demand in the full record, and dividing by
the temporal standard deviation.
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